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Abstract

This is the vignette for the R package cocons. The package provides a set of functions for
analyzing data that is indexed in space, and can be considered Gaussian. It allows for more flexible
representations of the spatial structure compared to classical implementations by modeling different
sources of nonstationarity with covariates information available at each index location. The package
is aimed to beginner and expert users, providing functions that are intuitive to use with outputs easy
to interpret, but also with the possibility of reusing most of the functions to extend the scope and
usability of the presented functions. The package offers efficient C++ routines for constructing the
associated covariance matrices. It also offers a variation of the general covariance model suitable
for very large datasets, which, in combination with the R package spam, benefits from inducing
sparseness over the covariance matrix to ease the computational needs when analyzing spatial data
with thousands of observations. This vignette briefly introduces the modeling approach and provides
a brief walk-through analysis with synthetic example data.
Keywords: Gaussian process, covariance function, prediction, very large datasets, R package

1 Introduction

It is often assumed that spatial variable of interest that varies over a continuous domain of interest can be
represented by a Gaussian process (GP) with a specific mean function m(·) and covariance function C(·, ·).
A key advantage of GP is that these two functions fully determine the distribution at some sampling
locations {s1, . . . , sn}, and therefore play a key role in the representation of the process. The choice of
m(·) and C(·, ·) is broad and typically depends on the analyst and problem at hand. In its classical setting,
the mean function m(·) is assumed to take a regression shape as m(·;β) = XβT, where β is an unknown
vector of parameters of some length m1, and where the covariance function C(·, ·) is chosen from one of
the well-known covariance models, such as the Exponential, Spherical, Wendland, and Matérn families
among others, with a parameter vector ψ of length m2, that shape characteristics of the spatial structure
of the GP in a global sense, such as variance (or partial-sill), scale (or range), and smoothness. For more
about classical covariance functions, see [Gelfand et al., 2010]. The use of a particular covariance function
implicitly states assumptions on how the process covariates at different locations. In its simplest setting,
the use of these covariance functions implies that the underlying process is stationary and isotropic,
meaning that the correlation structure of the process can be simplified based on the Euclidean distance
between locations with a global common variance. Isotropy and Stationarity, while convenient from a
modeling and computational efficiency point of view (given the low dimensional parameterization of the
associate covariance models), has not aged well, partially after the leap in quality and quantity of spatial
data during the last two decades. The oversimplification of the covariance structure often leads to a
limited representation of the prediction distributions.

Over the past two decades, a consistent and extensive development of user-friendly R package
implementations has been made available to users around the globe to facilitate the analysis of spatial
analysis, for both small and very large sample sizes. Among them, we can mention (in descending
order by their number of total downloads from CRAN at the time of writing this) spam [Furrer et al.,
2023] [Furrer and Sain, 2010], [Gerber and Furrer, 2015], [Gerber et al., 2017], which provide efficient
Fortran routines for handling, storing, and displaying sparse matrices, fundamental for an efficient
implementation of the tapering approach [Furrer et al., 2006]. fields package [Douglas Nychka et al.,
2021], an extensive package involving curve, surface, and function fitting with an emphasis on splines,
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spatial data, and spatial statistics. spatstat [Baddeley et al., 2015] [Baddeley et al., 2013] [Baddeley and
Turner, 2005], which focus on functions for analysing spatial point patterns in 2D, 3D, and space-time.
gstat [Pebesma, 2004] [Gräler et al., 2016], offering an extensive set of functions for variogram modeling,
prediction, and visualization, with support for sf [Pebesma and Bivand, 2023a][Pebesma, 2018], and
stars [Pebesma and Bivand, 2023b] package. convoSPAT [Risser and Calder, 2017] offering functions for
modeling convolution-based nonstationary Gaussian process models to point-referenced spatial data. GpGp
providing functions for fitting and doing predictions with Gaussian process models using Vecchia’s (1988)
approximation [Vecchia, 1988] [Guinness, 2018]. varycoef [Dambon et al., 2021], implementing maximum
likelihood estimation method for estimation and prediction of Gaussian process-based spatially varying
coefficient (SVC) models. GeoModels [Bevilacqua and Gaetan, 2015] [Bevilacqua et al., 2016] [Vallejos
et al., 2020], providing functions for Gaussian and Non-Gaussian spatial and spatio-temporal data analysis,
based on standard likelihood and which provides functions for the analysis of skewed Gaussian processes,
with composite likelihood functions, a likelihood approximation method called weighted composite
likelihood based on pairs. spmodel [Dumelle et al., 2023], providing functions for fitting, summarizing,
and predictions of a variety of spatial statistical models applied to point-reference and area (lattice) data.
To the best of our knowledge, none of these packages offers user-friendly implementations of closed-form
covariate-based modular covariance functions for GP’s.

The cocons package provides a user-friendly and efficient way of representing single-realization and
multiple-realizations of Gaussian processes with a covariate-based spatially varying covariance function.
This means that we can adjust the local spatial structure of the process based on features at the spatial
index, such as elevation, ridges, lakes, cloud coverage, etc. This covariance function allows us to consider
different source of nonstationarity of the spatial structure in a modular way. Under the hood, the
computationally intensive routines benefit from efficient storage of data structures, parallel computing,
and the efficiency of C++. At the very core of the cocons package lies the coco class, which enables us
to easily perform tasks such as optimization of the model’s parameters, visualization, prediction, as well
as conditional simulation. With cocons, we offer a toolkit that offers modular modeling of a Gaussian
process that enables the user to consider seven aspects that shape the mean and the spatial structure.

This vignette introduces the key features of the R package cocons. The remainder of this vignette
is organized as follows. Section 2 introduces the basics of Gaussian-based spatial analysis. Section 3
introduces the package functionalities through a data analysis example. Finally, Section 4 concludes with
a short discussion.

2 Basics of spatial statistics

In this section, we introduce the very basics of spatial analysis. Be aware that this addresses only key
aspects. The user show can refer to [Gelfand et al., 2010] for a proper introduction to maximum likelihood
spatial analysis.

When analyzing a Gaussian process Z(·) at a set of locations {s1, . . . , sn} ∈ D, being D ⊂ R2, it is a
common practice to assume that Z(·) can be decomposed as

Z(s) = m(s) + Y (s) + ϵ(s) , s ∈ D,

where m(s) is the mean function, Y (s) is a zero-mean spatial process where C(Y (si), Y (sj)) = C(·, ·;ψ),
being C(·, ·;ψ) a valid covariance function with parameter vector ψ, and where ϵ(s) is an iid zero-mean
white-noise process. At the sampling locations {s1, . . . , sn} ∈ D, the process Z follows a multivariate
Gaussian distribution with mean vector µ of length n and the n× n positive-definite covariance matrix
ΣZ , with elements [ΣZ ]i,j = C(si, sj ;ψ). Considering z as the available sample of length n, optimization
of the model’s parameter relies on minimizing

−2l(ψ,β) = n log(2Ã) + log detΣZ + (z− µ)TΣ−1
Z (z− µ).

Moreover, considering that for a specific fixed ψ0 there is a closed-form solution for β, the optimization
can be carried out only for ψ as

−2lp(ψ) = n log(2Ã) + log detΣZ(ψ0) + zTP(È)z, (1)

whereΣZ(ψ) is the covariance matrix based on ψ, and P(·) = Σ−1
Z (·)−Σ−1

Z (·)X(X′Σ−1
Z (·)X)−1X′ΣZ

−1(·).
Then, β is retrieved as

β(ψ0) = (XTΣZ(ψ0)
−1X)−1XTΣZ(ψ0)

−1z. (2)
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Equation (1) can be optimized by numerical algorithms as well. Finally, β̂ML = β̂(ψ̂ML).
Predictions of the process Z at new locations {s∗1, . . . , s∗k} based on the adjusted model are computed

as the conditional distribution of multivariate Gaussian distributions, defined as

Zpred|Z = z ∼ Nk(X
pβ +ΣPZΣ

−1
Z (z−Xβ),ΣP −ΣPZΣ

−1
Z ΣT

PZ), (3)

where ΣPZ is a matrix of dimension k × n with elements [ΣPZ]i,j = C(s0i , sj), i.e., a matrix that encodes
how the process at the unseen locations covariates with the process at the observed locations. Where
ΣP is a matrix k × k with elements C(s∗i , s

∗
j ;ψ). As expected, we see that the conditional distribution

relies heavily on the covariance function C(·, ·), with the assumptions of stationarity and isotropy limiting
prediction capabilities.

Classical covariance models usually represent the spatial structure globally. For example, the Matérn
covariance model [Furrer, 2016] is defined as

C(h;ψ) = Ã2 2
1−¿

Γ(¿)
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µ
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(√
8¿
h

µ

)
, (4)

where h is the Euclidean distance between two spatial locations si and sj , Ã > 0, µ > 0, ¿ > 0,K¿(·) is
the modified Bessel function of the second kind of order ¿ [Abramowitz and Stegun, 1970], Γ(·) is the
Gamma function, and ψ = (Ã2, µ, ¿)T.

A more flexible covariance model is offered in cocons, which is a parametric version of the kernel
introduced in [Paciorek and Schervish, 2006], for which convenient decisions for each of the aspects has
been taken. The covariance function takes the form of
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where Ãx
i , Σ

x
i , and ¿

x
ij are parametric functions related to specific characteristics of the spatial structure,

Ã2
ϵ is the parameter associated to the white noise process ϵ(·), and where I(A) is an indicative function

when the event A is present. In particular, we define ¿xij =
√
¿i
√
¿j . Finally, Qij is a semi-distance metric

[Schoenberg, 1938] of the shape of

Qij = (si − sj)
T
(Σi +Σj

2

)−1

(si − sj), si, sj ∈ D, (6)

whereas Qij reduces to the Euclidean distance when Σi = Σj = µI, with µ > 0. We present a brief
summary in Table 1, describing the different characteristics of the model and how these relates to (5).

Source Related to Description Model
mean µ mean function X1β
std.dev ÃX marginal standard deviation exp(0.5X2α)

scale ΣX local scale exp(X3θ1)

aniso ΣX local geometric anisotropy exp(X4θ2)

tilt ΣX (restricted) local tilt cos(logit−1(X5θ3))
smooth ¿X local smoothness (¿u − ¿l)/(1 + exp(−X6φ) + ¿l
nugget ÃX

ϵ local micro-scale variability exp(X7·)

Table 1: Summary of the available source of nonstationarity that can be modeled with the coconspackage.

where β,α,θ1,θ2,θ3,φ and · are unknown parameters related to each of the aspects, ¿l ¿u are the
lower and upper considered limits for the spatially varying smoothness aspect, and where Xi means that
the associated design matrix is specific for the model.

3 Introducing the cocons package via data analysis

Here, we illustrate a simple example of the key functionalities of cocons aimed to model, visualize, predict,
and simulate GP’s process with flexible covariance models. The Vignette introduces the two available
models offered in cocons: a GP with dense covariance structure, which implements a covariance structure
that can adopt up to seven spatially varying aspects, and one GP model aimed for very large data sets,
allowing up to four spatially varying aspects. The cocons R package is available on CRAN and can be
installed and loaded as follows
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install.packages("cocons")
library("cocons")

We then introduce both models with a short data analysis of synthetic datasets included in the package,
one for each considered model.

3.1 Modeling GP’s with flexible dense covariance functions

We showcase the key functions related to the dense model via data analysis of the holes synthetic
dataset. We load the holes object by

data("holes", package = "cocons")

which is an object of type list containing two dataset, the usual training and test datasets. Each of
these datasets contains five variables, two related to the spatial indexing (x, y), two covariates (cov.one
and cov.two), and the process response (z). We have 6000 and 540 observations in the training and test
dataset, respectively. In Figure 1 we present an overview of the training dataset.

(a) (b)

(c) (d)

Figure 1: (a) spatial distribution of the sample z. (b) Normal Q-Q of the scaled sample z. (c) and
(d) present the spatial distribution of the covariates cov.one and cov.two, respectively. Four holes are
present in the training dataset, which corresponds to locations of the test dataset. The challenge lies on
providing predictions to these locations with good uncertainty quantification.

A first inspection of panel 1a reveals a pattern related to the scale of the process. We see that for large
values of cov.one in Panel 1c, there appears to be a higher correlation between z than for lower values of
cov.one. This is seen mainly due to the slow transitions between colors leading to larger ’clusters’ when
compared to the lower half. On a second level, and more subtle now, higher values of cov.two in Panel 1d,
seem to be associated with a greater spread of process values. This can be seen particularly in the upper
left region of the domain when compared to the bottom right region. To complete the inspection of
Figure 1, we see that the scaled distribution of z (after scaling) in Panel 1b follows approximately a
standard Gaussian distribution.

For further inspection, we define four regions naturally defined by placing a cross centered at the
middle of the domain. We call each of these regions by the main four cardinal points. We compute the
empirical correlograms (via the gstat package) and variances for each of the four defined regions, as
shown in Figure 2.

By inspecting the correlograms for each of the mentioned regions at Panel 2a, we see how the correlation
decays differently for the North & East region on one side, whereas in comparison to the South & West
regions, the correlations decays slower. This supports the idea that the process exhibits two different
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(a) Empirical correlograms

Region Ã̂2

North 1.32
West 1.20
South 1.82
East 2.14

(b) Empirical variances

Figure 2: Empirical correlograms and variances for the training dataset of the holes dataset.

spatial structures with considerably different scales. On the right side of Figure 2, we have empirical
values of the variances for each region, with the South and East regions exhibiting sensible higher values.

This brief inspection of the holes dataset suggest models for shaping the spatially-varying aspects
for the std.dev and scale. Based on this, we will consider a model for the local variance as a function of
cov.one and a model for the scale as a function of cov.two and cov.one. Yet, to highlight some package
functionalities, we will also consider cov.two for the scale aspect. Finally, we will consider the remaining
aspects fixed to their true values to simplify the analysis.

Given that we have some intuition on the models for alpha and scale, the next step is to create the a
coco object. Given that the main functions of the package are built around this object, it is easier to
build this first and perform different tasks related to spatial analysis. Advanced users of R have also
the option of using the accessory functions of the package to extend the functionalities of the package,
which are called getFunction(), being Function a specific task required to run different functions. The
coco object returns an S4 object storing information about the type of coco model as well as information
related to the dataset, locations, etc. One key argument is model.list, which specifies the different
spatially varying aspects (and mean). For this particular example, we define it as

model.list <- list("mean" = formula(∼ 1),
"std.dev" = formula(∼ 1 + cov.one + cov.two),
"scale" = formula(∼ 1 + cov.one + cov.two),
"aniso" = 0,
"tilt" = 0,
"smooth" = 3/2,
"nugget" = -Inf)

This establishes seven models, one for each available aspect. In particular, we consider a global mean, and
we associate both std.dev and scale aspects to the covariates cov.one and cov.two, plus an intercept.
This defines 3 parameters for each model. As mentioned above, the remaining aspects are considered fixed
to their true parameters. aniso and the tilt, are set to 0, smooth aspects set to 3/2 directly specify the
smoothness of the process; and nugget is set to -Inf, meaning absence of this aspect as well (given its
log parameterization). We take a 1000 random sample from the holes dataset and we store it in an object
called holes. We then proceed to create and store the coco object by

coco_object <- coco(type = "dense",
model.list = model.list,
locs = as.matrix(holes [[1]][, 1:2]),
z = holes[[1]]$z,
data = holes [[1]])

Let’s inspect each of the arguments of the coco function. Argument type = "dense" means that we
are modeling a Gaussian process with a dense covariance matrix; arguments locs, z, and data, relates
to information about the locations, response variable, and dataset with covariates, respectively. It is
important that locs is a matrix type to ensure the arguments passed to the C++ functions work as
expected. Finally, we must also provide the mentioned model.list in the model.list argument. Under the
hood, efficient handling of the design matrix for each of the models are carried out to reduce memory
consumption.

As a side comment, if we decide to model the smooth aspect, we need to provide additional information
specifying the boundaries of the smooth aspect. This information is passed as smooth.limits item of a
list named info, specifying the lower and upper bounds of the smoothness aspect, for example, by

coco(..., info = list("smooth.limits" = c(0.1, 1)))
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This means that the specified aspect will be constrained to (0.1, 1). The rationale behind constraining
the range of variability of the smoothness aspect is a pragmatic approach to promote numerical stability
in the estimation procedures.

Having built our coco object, fitting the model is straightforward. The optimization of the 7 parameters
in our model is done with the function

coco_object <- cocoOptim(coco_object, ncores = 4)

the cocoOptim function returns the updated coco object with information on the optimization, so we
save it in the same object to save storage. The parameters are optimized via the L-BFGS-B numerical
optimizer [Byrd et al., 1995], and in parallel thanks to the OptimParalell R package [Gerber and Furrer,
2019]. Extra arguments of cocoOptim such as boundaries and optim.control are optional and can be
investigated in the help section. The cocoOptim function provides defaults upper and lower bounds for
each of the parameters as well as a suggested optim.control list for the optimization routine.

By default, the parameters to be optimized differ from the specified ones to reduce the correlation
between the parameters. This aids during the optimization routine and promotes estimations with lower
uncertainties and fewer iterations of the optimization routine. These transformed parameters are stored in
the coco.object@output$pars. We can recover the intended parameters for std.dev and scale with the
function getEstims(coco_object)[2:3] (by default it outputs 7 lists, one for each aspect), which returns

$std.dev
[1] 0.771793213 0.009118481 0.576093069
$scale
[1] -1.6295528 0.9908970 0.0511023

Each element of the vectors within each of the aspects relates to the parameters in the order of how they
were specified in the model.list starting from the first aspect. We see that the estimates for the parameter
of cov.one for std.dev, and cov.two for the scale are very close to 0. Assuming that the maximum
likelihood estimator follows asymptotically a Gaussian distribution we can draw approximate confidence
intervals for the parameters. To do so, we need the Hessian matrix, which can be approximated via the
function getHessian, as

Hessian_coco <- getHessian(coco_object, ncores = 4)

notice that we can specify the number of cores, meaning that the routine that computes an approximate
of the Hessian matrix is run in parallel, saving a considerable amount of time when the sample size and
number of parameters is large.

We provide the fitted coco object and the number of cores we want to use to compute the approximate
Hessian matrix. Once we have this information, we can retrieve approximate confidence intervals of the
parameters in the model with the function getCIs.

getCIs(coco_object, inv.hess = solve(Hessian_coco), alpha = 0.05)

Beyond the fitted coco object, we have to provide the inverse of the Hessian matrix, and the confidence
level ³.

2.5 % 97.5 %
mean1 0.84854447 1.2395687
std.dev1 0.52747247 1.0161140
std.dev2 -0.21336357 0.2316005
std.dev3 0.41585700 0.7363291
scale1 -1.73727097 -1.5218347
scale2 0.89830263 1.0834914
scale3 -0.02373882 0.1259434

For alpha2 and scale3, the 0 is included in the CIs. This would be analog to performing a two-tail
univariate hypothesis testing over the parameter with a probability type I error of ³. This gives us some
intuition on how to reduce the model. We drop the terms cov.one for std.dev and cov.two for scale,
and fit it again storing it in the same object name. The CIs for the final model are

2.5 % 97.5 %
mean1 0.8318155 1.2378472
std.dev1 0.6199807 0.9255969
std.dev2 0.3957672 0.5740780
scale1 -1.7070386 -1.5461666
scale3 0.9331792 1.0371132
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We can compute the associated BIC values with the function getBIC(), leading to a reduction of the BIC
for the simpler model (1351.672 vs. 1363.701). A quick overview of the adjusted models are available via
plot(coco.object), but we will show how this can be done manually for the two aspects of interest

spat_effects <- getSpateffects(coco_object)
par(par = c(1, 2))
quilt.plot(coco_object@locs, spat_effects$sd)
quilt.plot(coco_object@locs, spat_effects$eff_x)

In Figure 3 we see the output of this code (up to visual enhancements). The spatial distribution of
these two aspects is mainly given by the underlying covariates we specified in the model.list. For the
marginal standard deviation, we see that it ranges from 1 to 2, 2 times as large, while for the effective
scale, the effect of allowing a spatially varying aspect is stronger, ranging from 0.1 to 0.7, 7 times as large.

(a) sd (b) eff. scale

Figure 3: adjusted effects of the reduced model.

Once we have adjusted the parameters of our model, we can easily use the fitted coco object to predict
the process values at the holes, for which we require (and have) information of cov.one and cov.two at
every prediction location. To compare the performance of our model, we also estimate a classical Matérn
model. Since a classical Matérn model in 4 is a simplification of the regression model, we can use the
cocons package to fit this model as well. This is done with the following model.list

model.list <- list("mean" = formula (~ 1),
"std.dev" = formula (~ 1),
"scale" = formula (~ 1),
"aniso" = 0,
"tilt" = 0,
"smooth" = 3/2,
"nugget" = -Inf)

This means that we are only allowing a global mean, and globals parameter for std.dev and scale. We call
the classical optimized model Optim.classic. The estimated parameters are of 1.62 for the standard
deviation, and a scale of 0.12, values within the range of variability of the regression model.

To perform predictions, we call the function cocoPredict() by

Pred.ours <- cocoPredict(coco_object,
newdataset = holes[[2]],
newlocs = as.matrix(holes[[2]][,1:2]),
type = "pred")

In addition to specifying the fitted model, we need to provide information about the prediction covari-
ates and their locations (newdataset and newlocs, respectively). Metrics such as the CRPS [Gneiting
and Raftery, 2007] can be computed with getCRPS and getLogrank with the information provided by
cocoPredict, as

CRPS_regre <- getCRPS(z.pred = holes[[2]]$z,
mean.pred = Pred.ours$trend + Pred.ours$mean,
sd.pred = Pred.ours$sd.pred)

In Figure 4 we present different aspects of the prediction capabilities of both models. In Panel 4a the
bias for both models is shown, with small differences. For this specific dataset, where the regression model
makes a difference is quantifying the uncertainty of the predictions, which led to a reduction of the CRPS
values (Panel 4b), with a reduction of 28% of the mean CRPS, when compared to the classical model.
This better representation of the variance of the prediction leads to honoring better the assumption that
the conditional distribution is Gaussian, as we can appreciate in Panel 4c, where the typical S shape of
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(a) bias (b) CRPS (c) empirical cdf

Figure 4: metrics related to prediction under both models. In blue classical model. In red, spatially-
varying model.

the CDF for the classical model is evident, meaning that in general overshoots the uncertainty, translating
this into over-smoothing of the predictions. For further inspection, we desegregate the CDFs of both
models by region, as shown in Figure 5.

(a) (b)

Figure 5: empirical cdf’s by regions. In red, spatially-varying model. In blue, classical model.

We see that, when desegregated by region, the assumption stated in Equation (3) is preserved better
when employing the spatially-varying model, than when employing the classical model, where it seems
that the aggregation of many regions with different spatial structures led to an approximation of this
assumption. We can inspect this further in Figure 6, where we inspect the associated standard deviation
of the prediction with the minimum distance of the prediction location to a training location.

In Figure 6 we see a key difference between models. While the classical model is only able to provide
one unique variance allocation as the minimum distance between the prediction location and the training
locations increases, the regression model can adjust to the local spatial structures. For the East a West
regions, we have a local spatial structure with almost 4 times larger scale than its classical counterpart,
translating this to more information and therefore less uncertainty. For those scenarios with lower scale,
there is also a clear contrast between the classical model. For the West region, we have lower local
variance in comparison to the classical model, leading to an overall smaller variance, but for the South
region, which is a low-scale, high-variance location, the regression model resolves by allocating an overall
higher uncertainty in comparison to the classical model.

We finish the analysis of the predictions by inspecting the filled-up maps with the true predictions as
well as the true values in Figure 7. As expected, there is little to no difference when comparing the two
models with respect to point predictions. For this particular dataset, where there is no spatial trend,
we can (partially) recover the process information if the prediction location is within the range of the
(effective) correlation between the training locations. The advantage of more flexible models over classical
models diminishes as the distance between the prediction location and the training prediction decreases
(or increases) relative to the estimated scale of the spatial structure.

However, in some scenarios, we can achieve better point predictions. In particular, if for the same data
set, we have regions of relatively high and low scale, and here the prediction locations are at a distance
from the training locations, close to the effective point scale, and where the values to be predicted are far
from the trend, we may observe a better representation by the regression model than by the classical
model.

To finalize this section related to the dense model, our package provides as well an integrated function
to simulate random fields (marginal and conditional) with a spatially varying covariance structure. We
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(a) East (b) West

(c) North (d) South

Figure 6: standard deviation of the conditional distribution Zpred|Z vs minimum distance between the
prediction location and the sample data, for the different regions. In red, spatially-varying model. In
blue, classical model.

(a) (b) (c)

Figure 7: (a) shows true data, (b) training data + predictions at the holes based on the classical model,
while (c) based on the regression model.

can simulate fields by providing a coco object. We rbind.data.frame both training and test datasets into
an object called df_full.

list_formulas <- list("mean" = as.formula(" ~ 1"),
"alpha" = as.formula(" ~ 1 + cov_y"),
"scale" = as.formula(" ~ 1 + cov_x"),
"aniso" = 0,
"tilt" = 0,
"smooth" = 3/2,
"nugget" = -Inf)

coco_sim <- coco(type = ’dense ’, data = df_full,
locs = as.matrix(df_full[,1:2]),
z = rep(NA,length(dim(df_full )[1])),
model.list = list_formulas)

)

pars_to_feed <- unlist(getEstims(optim_second ))[ unlist(
getEstims(optim_second )) != 0][-5]

sim_field <- cocoSim(coco.object = coco_sim,
pars = pars_to_feed,

9



Draft

DRAFT

n = 3, standardize = TRUE,
type = ’classic ’,
seed = 202020)

(a) (b) (c)

(d) (e) (f)

Figure 8: Marginal simulation based on estimated parameters for flexible model (top row) and classical
model (bottom row). Seeds have been set common by column.

In Figure 8 we present six marginal simulations, three for each model. Again, here we can see the
regions given by the different scales for the simulations from the regression model, while under the classical
model, this aspect of the training data is lost. The cocons package also allows for conditional simulation.
We perform conditional simulation over the holes in Figure 9 we present the conditional simulations.

pars_to_feed <- unlist(getEstims(optim_second ))
[unlist(getEstims(optim_second )) != 0][-5]

# with fitted object only
sim_field_cond <- cocoSim(coco.object = optim_second,

pars = pars_to_feed,
n = 3, standardize = TRUE,
type = ’classic ’,
cond.info = list(’newdataset ’ = df_test,

’newlocs ’ = as.matrix(df_test[,1:2])),
sim.type = ’cond’,
seed = 202020)

We see how the conditional simulations honor better the true data.

3.2 Modeling GP’s with flexible sparse covariance functions

Now, we consider the scenario where the sample size exceeds our computational resources (usually
memory) to run the key functions of cocons. In these scenarios one of many approaches to reduce
computational requirements (especially when the aim is over the predictions) is the tapering approach
[Furrer et al., 2006], for which we induce zeroes in the covariance matrix to make it sparse and then
through computational efficient algorithms that benefit from these types of structures enhance the speed
and memory consumption required for the key functions of the package. Our package relies on the efficient
routines for sparse matrices implemented in spam.

At the level of usage, defining, optimizing, and predicting, are almost identical as shown before. To
reduce the extent of this Vignette, we focus on the difference only. For this part, we use a second synthetic
dataset which can load as:

data("stripes", package = "cocons")
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(a) (b) (c)

(d) (e) (f)

Figure 9: Conditional simulation based on estimated parameters for flexible model (top row) and classical
model (bottom row). Seeds have been set common by column.

This object contains two datasets again, one for training and one for prediction. The dimension of the
training dataset is of 10000 observations and 7000 for prediction. We take a random sample size of 5000
observations.

(a) (b)

(c) (d)

Figure 10: A set of figures related to the training dataset of the stripes dataset. (a) spatial distribution
of the response z. (b) Normal Q-Q of the scaled response z. (c) and (d) present the spatial distribution
of the available covariates (cov.one and cov.two respectively). The stripes present in the first plot are
regions to predict.

We allow spatially varying aspects for those aspects that influence prediction under very large datasets,
such as the variance, local scale, smoothness, and nugget effects (and a global parameter for the scale
parameter). Therefore, our new model.list will only specify aspects for the mean, std.dev, scale,
smoothness, and nugget. Others aspects are set to zero. We define a model with both cov.one and cov.two
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for std.dev and smoothness and proceed to define the coco object, and the product between cov.one and
cov.two for the spatially-varying scale. Then, we define the coco object as

coco_object <- coco(type = ’sparse ’,
model.list = list_formulas,
locs = as.matrix(stripes [[1]][,1:2]),
z = stripes [[1]]$z,
data = stripes [[1]],
info = list(’smooth.limits ’ = c(0.5, 1.5),

’taper ’ = spam:: cov.wend1,
’delta ’ = 0.25))

A few differences with respect to the dense coco object: beyond specifying the type of the coco object
is sparse, we have to provide information regarding the taper function (that must be from the spam

package), as well as the taper range. For a given taper range ¶, the resulting covariance between two
locations will be zero for Qij > ¶. Moreover, we have to provide information regarding the smooth.limits
as mentioned before.

Given that this object is aimed at very large datasets , the modeling of the spatial structure should
be focusing as well only on those aspects that are important for very large datasets such as sill, scale,
nugget, and smoothness.

By creating this object, we induce sparseness over almost 95% of the matrix, meaning that the
computation is done with the remaining data points. We can ask for the fitted parameters by the same
function getEstims(optim_taper)[c(2,3,6)]:

$std.dev
[1] -0.07304400 0.06237891 0.98408386 0.00000000
$scale
[1] -1.4465915 0.0000000 0.0000000 -0.9626796
$smooth
[1] 0.033847097 2.174419388 -0.009839086 0.000000000

Although the parameters of std.dev and smooth are close to 0 we cannot draw hypothesis testing here
given that the estimates are biased. Still, informal comparison of AIC or BIC can lead to a more efficient
model.

(a) bias (b) CRPS (c) empirical cdf

Figure 11: different metrics related to prediction under both models. Now, bias is effectively the same
under both models.

(a) Classic (b) Flexible

Figure 12: Interpolation error under both models.
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4 Discussion

This vignette introduced the R package cocons, which offers a modular and user-friendly approach
for modeling Gaussian processes with flexible covariance models. For moderate sample sizes, we can
independently adjust several source of nonstationarity of the process spatial structure. We also address
the big-N problem by offering a tailored model focusing only on relevant aspects for prediction under very
large datasets and combining the presented covariance model with the tapering approach. The package
also presents a variety of functions for visualizing, inspecting, and simulating Gaussian Processes with
flexible covariance models.

It is important to be aware of the assumptions associated with the presented model to obtain reliable
results. One of the key differences in comparison to those assumptions related to classical Gaussian
processes is that we replace the (weakly) stationary and isotropic assumptions with the assumption
introduced by Journel and Huijbregts [1976], which defines quasi-stationarity as local stationarity. This
assumption implies that the process can be considered stationary locally in a small window. Moreover, we
assume that the covariance matrix is known, and thus, an implicit assumption is that the uncertainty of
the parameters associated with the covariance matrix can be neglected. Finally, when considering many
parameters in the covariance structure, regularization is often required to promote the covariance matrix’s
numerical stability. We offer an easy-to-use penalization over the product between the global scale and
global smoothness. This trades computational stability with prediction capabilities and is especially
important when strong misspecification is present in the mean. The penalization term is implemented in
the cocons package by specifying in the info argument of the coco function as list(’lambda’= lambda).
When modeling the different sources of nonstationarity, it might be too optimistic to expect the functional
relationships between these characteristics and the covariates. In addition, the fit quality may be affected,
among other things, by the noisiness of the available covariates and the spatial configuration. Instead of
defining a continuous relationship between spatial structure and the covariate, categorizing the covariate
to obtain more reliable local spatial structures may be preferred in these scenarios. Deviations from these
model’s assumptions have yet to be investigated.

5 Computational details

The results in this Vignette were obtained using R 4.3.1 with the packages cocons (v.0.1), spam (v.2.9.1),
fields (v.14.1), and gstat(v.2.1-1). All computations were done using a Macbook Air M2 with 16Gb of
ram.
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